This document consists of part1 (this page) and part2.
What do plants need? Liebig's law states that the need in shortest supply will be the main factor limiting growth. Often overlooked needs are light and warmth. | ||
watering | A plant's most important need is water. In most places on Earth, water is a problem. There is either too much of it or too little. Water is needed by soil organisms too, so a farmer's most urgent task is to manage the supply of water. | |
nutrients | Nutrients are found in the rocks. Once weathered into soil, these become available to plants. This supply is not enough, the reason why all terrestrial ecosystems recycle their nutrients with minimal losses. Agricultural soil should recycle its nutrients too, but there are insurmountable problems. | |
fertilising | Is fertilising necessary and how is it done? How can the fertility of the soil be enhanced and maintained? | |
trees for grassland | Bringing variety in a monoculture can bring additional fertility. Here the case for trees in grassland is studied. | |
salt | Because plants do not need salt the way animals and humans do, salt is easily lost from our soils, particularly through modern farming. Produce does not only taste weak, it also contains fewer salts. Salt deficiency in society may arrise from other causes too. | |
links |
NPKnowledge: Iowa State University publications about fertilising and soil management. |
Plant needs
In the chapter on geology, we've seen that the base rocks from which soil is weathered, ends up quite different in composition from place to place, but in practice all fertile soils on earth follow the rather constant chemical composition of plants, which is similar to animals. This can be understood from the way plants, animals and soil form an ecosystem, cycling the available nutrients many times before they get lost. In the process, unnecessary concentrations of elements (like salt and chlorine) do get lost, resulting in concentrations of available soil elements, closely matching plants' needs, everywhere on Earth. Although their ratios of elements are similar, soils may vary considerably as to their densities, and thus fertility. |
Underground, the soil nutrients are not kept in solution but inside the bodies of the living organisms (and some are adsorbed onto clay platelets). No wonder then that the amount of life in good soils is 2 to 10 times more than that above ground. The nutrients become available when some organisms die, which happens frequently because they grow fast. But it does not happen in sudden boosts, as is needed for a monoculture that has been planted all at the same time, like a potato crop. In this respect, natural, productive soil appears to need more fertiliser than it actually does. Modern farming, driven by economic constraints, is forced to use artificial fertilisers, often to the detriment of the soil's natural fertility.
The ecologist Edward S Deevey Jr discovered that living matter
consists mainly of the six elements hydrogen (H), oxygen (O), carbon (C),
nitrogen (N), phosphorus (P) and sulphur (S), in the ratio H:O:C:N:P:S
= 2960:1480:1480:16:1.8:1, which is an average for all living organisms
on Earth. Of these, the woody plants far outnumber all others, so the formula
is biased towards these. The ratio H:O:C:N:P:S = 1600:800:800:9:1:5 is
often used for land plants, and 212:106:106:16:1:2 for marine plants and
soil humus. From an ecological perspective, it would not be surprising
if scientists discover that these ratios for terrestrial life (green matter
in plants + animals) are the same as for soil biota (bacteria + fungi +
animals). By comparison, the most common component of plants are
the carbohydrates (sugars, starches and woody substances), represented
by H:O:C = 12:6:6 atoms, or as masses 1:6:8.
With C, O and N having similar atomic masses (12, 16, 14), as a rule
of thumb, each unit of nitrogen belongs to 200 units of life (dried) and
100 units of carbon.
What every plant needs for growth is:
Liebig's Law
The scientist Liebig discovered that all of the above needs need to
be satisfied, and that the one in shortest supply will be the main cause
of limiting growth. Thus in winter, when it freezes, plants do not need
either carbon dioxide or water or nutrients. What they need is warmth first.
Sunlight and warmth
Sunlight and warmth go together, since the only input of energy comes
from the sun (see oceanography/radiation).
Seasonal cycles affect particularly the temperate areas. But it can be
influenced considerably. A glasshouse for instance, traps heat radiation
by trapping visible light but preventing infrared radiation from escaping.
In cold climates, glasshouses are often heated by burning fossil fuel.
Cropland can be sheltered from cold winds, by means of shelter belts. Heat
from sunlight can be trapped by stands of vegetation. Evaporation from
soil causes enormous loss of warmth, but it can be minimised by mulching
or planting a soil-covering crop.
The amount of sunlight in summer may be too much, causing the soil to dry out. Sheltering trees can be planted that lose their leaves in winter. Crops can be spaced properly to prevent them shading each other out.
Carbon dioxide
Carbon dioxide is rather scarce in our atmosphere, where it is found
as one molecule in every 30,000. All plants on the planet compete for this
resource, since all places on earth connect to the same atmospheric pool
of carbon dioxide. The most successful plants, living in warm tropical
areas scavenge it more successfully than plants living in cool areas with
less light.
Only recently did nature evolve a plant, capable of converting carbon
dioxide more efficiently than any other plant, while also using less water.
Their photosynthetic conversion requires four biochemical steps, rather
than the usual three, a process that saves it both energy and water. These
plants, called C4 plants, include the bamboo-like grasses, and the
agricultural crops sugarcane, maize and sorghum. They are about twice as
efficient in converting sunlight and need four times less water. C3 plants
have maximum sunlight conversion efficiency of 15% and C4 grasses up to
24%. In practice, due to leaf shading, these figures are five times lower.
Photosynthesis in C3 plants converts 0.1-0.4 g CO2 with 1 kg water, whereas
C4 plants convert 0.4-0.8 gram.
Succulent plants are active at night, taking up CO2 with their stomata (leaf pores) wide open, when other plants close theirs to minimise respiration. During the night, CO2 is absorbed and converted into chemical storage as oxaloacetic acid and then as malate. During the day, these compounds are converted and normal C3 photosynthesis takes place, with the plant's leaf pores closed to prevent unnecessary evaporation. This special form of CO2 fixation is called Crassulean Acid Metabolism (CAM). CAM plants are succulents, agaves, lilies, bromeliads, orchids, cacti, euphorbia, geraniums and many more. They use a minimum of water. (For more details and differences between C3, C4 and CAM plants, see the table below)
As can be expected, the C3 plants, which are limited in their CO2 uptake, react more vigorously to CO2 increases than the C4 plants. They also still outnumber the C4 plants, which are limited by temperature.
In externally heated glasshouses, carbondioxide from burnt fossil fuel for heating, is often piped into the glasshouse to enhance growth.
Water and nutrients will be discussed in their own subchapters below. See also the periodic table of elements for essential nutrient needs and symptoms of deficiency in plants, animals and humans.
|
Watering
Water is by far the most restrictive of a plant's needs. In spite of the massive size of the water cycle, which causes rain and snowfall, water is in short supply in most areas of the world, at least during one or more seasons. Water is not only necessary for a plant's survival but also for its soil biota, on which it ultimately depends. Likewise, the success of farming, depends mainly on how to keep the underground 'circus' alive, and with it, the above ground vegetation. |
Plants need water, a large amount of it when growing. The table below
gives an indication of how much water is transpired to produce one kg of
dry matter.
Water amounts in kg per kg dry matter (transpiration ratio).
|
A hectare of highly productive grain produces 8 ton of grain and some
10 ton dry matter, requiring some 10 million litres of water during the
season (4 months) for photosynthesis alone, or 100,000 litres per day,
or 1000mm of rain!
It is common sense therefore, to irrigate crops for higher productivity,
and also to increase the cropping area. Particularly as an insurance against
the vagaries of weather and climate, farmers all over the world are tapping
whatever water resources they can find. The most common of these are ground
water and artificial lakes.
Ground water and aquifers
Although soil and rock are compressed by tremendous forces, there are nonetheless gaps and cracks that have been interconnected by flowing water. One would have expected that water, being three times lighter than rock, is pushed up as sediments and rocks are pushed down by their own weight, so that free water cannot exist at depth. However, as can be observed in limestone Karst systems, water can exist deep down to 300 m and perhaps even deeper. What's more, these underground aquifers are interconnected as if it were a single underground lake, accessible by all who live above it. |
Pumping groundwater aquifers is so attractive because the water does not need to be transported. But aquifers replenish slowly. The deeper they are, the longer it takes. Saudi Arabia is estimated to have some 2000 cubic km of 10,000 - 30,000 year old water stored in aquifers to 300m deep.
The Ogallala aquifer in the USA spans eight states, covering some 452,000 square km, and estimated to hold 3700 cubic km of water, a volume equal to the annual flow of more than 200 Colorado rivers, an underground 'lake' of 120m deep. Today, the Ogallala alone, waters 20% of US irrigated land, depleting it by 12 cukm/yr. In several decades of pumping, the 3700 cukm reservoir has been shrunk by 325 cukm, facing extinction 300 years from now. It is the typical tale of all ground water reservoirs in the world.
Bangladesh is sinking into the sea because its groundwater has been pumped so extensively. In other places the lower water table is drying out valuable wetland areas. One may think that it is a stupid idea to pump water from underneath the plant's roots in order to put it on top of the land, where much of it evaporates. Yet this is exactly what has been happening all over the world. Since the groundwater is used by all but owned by none, it follows the 'tragic of the commons' (why should I limit my use, when the other guy is not?), unless rigorously managed by governments.
Groundwater is formed from water penetrating the soil and sinking to
deeper levels. As it is pumped, the water table drops, encouraging water
to flow more freely and thereby carrying substances that should not be
there. The table below gives an idea of the kinds of threats to groundwater
systems and how these affect humans. Note that the effects on the environment
are not mentioned.
|
Irrigation from artificial lakes
About 6000 years ago the Sumerians invented irrigation by diverting water from the Euphrates river to their crop lands. It improved yield and living conditions considerably. Today, wherever feasible, rivers are dammed for hydro electricity and irrigation. The high water pressure makes it possible to transport high volumes of water through a system of reticulated pipes. When carefully managed, it allows farmers to extend their cropping season and to increase productivity. One would think that irrigation is just another form of rainfall, but it is not. |
The water collecting in a reservoir is the run-off from rain falling on the upper-catchment area. In its journey to the lake, it has dissolved valuable nutrients but also the not so valuable salts that have been discarded by living soil. If this water were applied to soils that experience a good soaking several times per year, the salts would be washed further down the slopes, eventually ending in the sea. But so often it is the irrigated land's main source of water. As water evaporates from the soil, it leaves the salts behind, resulting in gradual salinisation which degrades the land. Much irrigated cropland has been lost this way. As stated before, it is difficult (or risky) to bring dry land into production. Irrigation from lakes can help in some climate situations, mainly to reduce the risk of drought. Hydro lakes do reduce the flow of the river, resulting in less flooding downstream and thus less soil fertility replenishment. The Aswan Dam in Egypt has caused such problems.
The table below shows how much world agriculture depends on irrigation
of its crops. Not surprisingly, the driest countries rely on it the most,
and it is in these places that irrigation brings its problems. In the table
below, padi culture has been included as irrigated land, but this is a
sustainable form of water harvesting. The growth of irrigated cropland
first kept pace with world population growth, but is now falling behind,
mainly because the most suitable land has been used. About 20% of irrigated
land is damaged by salinisation.
|
Water harvesting
Having a water lake above each farm sounds like a good idea. The stored water can reach lower farmland through the water table or by being piped there. Small lakes or ponds are used in this way to provide for drinking water for grazing stock, but the larger lakes are too much of an engineering challenge. |
Water saving
Water can be saved by reducing evaporation direct from the soil. Water evaporates faster in high temperatures and wind. So if wind speed can be reduced at soil level (and above it) while the soil can be kept cool, much water loss can be avoided. Covering the soil with mulch and erecting wind break hedges is one solution. In Spain and around the Mediterranean Sea, where the climate is too dry in summer, farmers till the soil under their olive trees to prevent weeds drawing water and mulch the soil with tilled, dry soil. However, this method leaves the soil wide open to erosion when sudden rains appear. |
Irrigation through open and unpaved channels, and applying it to the
land through surface furrows, may lose 50% of the water into the soil where
it is not needed and through evaporation. Applying water to crops by means
of drip irrigation, although more expensive, can reach up to 95% efficiency
in water use. Water savings have been achieved by replacing high pressure
sprinklers that make fine droplets, with low pressure sprinklers making
large droplets.
In many places in the world, fresh water is now a commodity that can
be traded in the freemarket. With the aim of encouraging farmers to conserve
water, it has also opened the way to feudal land ownership and water rights
being bought by industries and cities, who are in a better position to
offer higher bids.
This diagram shows how the world's fresh water resources are heading for a climax. Net fresh water falling on the land is about 40,000 cubic km/yr. Most of this runs off in floods and won't penetrate the soil. Some of the flood water is caught in dams (green area), which increases both the base flow and the amount of accessible water. Back in 1950, human consumption was only a fraction of accessible water, but by 1950 it became 50% and by the end of the millennium it stood at 80%. Only rapid building of dams can prevent total human demand from catching up with the amount of accessible water, but this can no longer be achieved. As a result, there will be a world-wide shortage of drinking and industrial water after the year 2020. |