What is pH and how is it measured? by Dr J Floor Anthoni (2005) www.seafriends.org.nz/dda/ph.htm
|
The Danish biochemist Soren Sorensen then invented the pH scale in 1909.
Because the resistance in the wall of the glass is very high, typically between 10 and 100 Mega-Ohm, the glass electrode voltage could not be measured accurately until electron tubes were invented. Later still, the invention of field-effect transistors (FETs) and integrated circuits (ICs) with temperature compensation, made it possible to measure the glass electrode voltage accurately. The voltage produced by one pH unit (say from pH=7.00 to 8.00) is typically about 60 mV (milli Volt). Present pH meters contain microprocessors that make the necessary corrections for temperature and calibration. Even so, modern pH meters still suffer from drift (slow changes), which makes it necessary to calibrate them frequently.
Improvements have also been made in the chemistry of the glass such that pollution by salt and halogen ions could be halted. The reference electrode, which traditionally used silver chloride (AgCl) has been superseded by the kalomel (mercurous chloride, HgCl2) electrode which uses mercuric chloride (HgCl) in a potassium chloride (KCl) solution as a gel (like gelatine). But electrodes do not have eternal life and need to be replaced when they drift unacceptably or take unusually long to settle.
[1] Cremer M (1906): Z. Biol, 47, 562
[2] Haber F and Z Klemensiewicz (1909): Z. Physik. Chem.,
67, 385
The pH meter measures the electrical potential (follow the drawing clock-wise from the meter) between the mercuric chloride of the reference electrode and its potassium chloride liquid, the unknown liquid, the solution inside the glass electrode, and the potential between that solution and the silver electrode. But only the potential between the unknown liquid and the solution inside the glass electrode change from sample to sample. So all other potentials can be calibrated out of the equation. |
Water is THE most important and miraculous substance
on Earth. Its molecules H-O-H form a boomerang shape with the O- end slightly
negative and the H2+ end slightly positively charged. These charged boomerangs
are attracted to one another, forming islands of cohesion, such that water
forms a liquid at temperatures where life thrives, whereas it should really
have been a very volatile gas like hydrogen sulphide (H2S) which has almost
twice its molecular weight. At the surface of Earth, water occurs in solid
form (ice), liquid (water) and gaseous form (steam or water vapour). In
cold areas all three phases co-exist.
Water is also unique in that it is both an acid (with H+ ions) and a lye (with OH- ions). It is thus both acidic and basic (alkaline) at the same time, causing it to be strictly neutral as the number of H+ ions equals that of the OH- ions. Because of its strong cohesion, only few water molecules dissociate (split) in their constituent ions: hydrogen ions (H+) and hydroxyl ions (OH-). Chemists would insist that H+ ions are really H3O+ ions or hydronium ions. Knowing that one molar of water weighs 18 gram (1+1+16), which equals 18ml, and that this quantity contains a very large number of molecules [1], only 0.1 millionth (10-7) mol are dissociated in one litre of water (pH=7). [2] The potential difference between the inside of the glass
electrode and the outside is caused by the oxides of silicon in side the
glass:
Once the ionic equilibrium is established, the potential
difference between the glass wall and the solution is given by the equation:
Even though modern pH glass electrodes have seen major improvements, they still don't like some substances low in H+ ions, like alkali hydroxides (NaOH and KOH), pure distilled water, etching substances like fluoride, adsorbing substances like heavy metals and proteins. Most modern pH meters have inbuilt temperature sensors to correct temperature deviation automatically to give values as if these were taken at a standard temperature of 25ºC. The readout is not influenced by temperature at pH=7.00 but outside this by 0.003 per ºC. Thus a pH taken at 5ºC (20º away from 25ºC), showing 4.00 must be corrected downward by 0.003 x 20 x 3.00 = 0.18. Likewise a pH value of 10.00 must be corrected upward by this amount. |
Caring for a pH meter depends on the types of electrode in use. Study
the manufacturer's recommendations. When used frequently, it is better
to keep the electrode moist, since moisturising a dry electrode takes a
long time, accompanied by signal drift. However, modern pH meters do not
mind their electrodes drying out provided they have been rinsed thoroughly
in tap water or potassium chloride. When on expedition, measuring sea water,
the pH meter can be left moist with sea water. However for prolonged periods,
it is recommended to moist it with a solution of potassium chloride at
pH=4 or in the pH=4.01 acidic calibration buffer. pH meters do not like
to be left in distilled water.
Note that a pH probe kept moist in an acidic solution, can influence
results when not rinsed before inserting it into the test vial. Remember
that a liquid of pH=4 has 10,000 more hydrogen ions than a liquid of pH=8.
Thus a single drop of pH=4 in a vial measuring 400 drops of pH=8 really
upsets measurements! Remember also that the calibration solutions consist
of chemical buffers that 'try' to keep pH levels constant, so contamination
of your test vial with a buffer is really serious.
[1] Avogadro's constant is 602,213,670,000,000,000,000,000
(602.214 billion trillion) or 6.02E23, named in honour of Amedeo Avogadro.
One mole of a chemical substance contains this number of molecules. Amedeo
Avogadro (1776-1856) was an Italian physicist. He proposed in
1811 his famous hypothesis, now known as Avogadro's law. The law
stated that equal volumes of all gases at the same temperature and pressure
contain the same number of molecules. Avogadro also distinguished
between an atom and a molecule, and made it possible to determine a correct
table of atomic weights.
[2] On the Seafriends web site we frequently use the
exponential notation E, such that 2.34E-4 means 2.34 x 10-4.
0 | 5% Sulphuric acid, H2SO4, battery acid. |
1 | 0.1 N HCl, hydrochloric acid (1.1) |
2 | Lemon juice. Vinegar (2.4-3.4) |
3 | wine (3.5-3.7) |
4 | Orange juice. Apple juice (3.8). Beer. Tomatoes. |
5 | Cottage cheese. Black coffee. Rain water 5.6. |
6 | Milk. Fish (6.7-7). chicken (6.4-6.6). |
7 | Neutral: equal numbers of hydrogen and hydroxyl ions. Blood (7.3-7.4). Distilled water without CO2, after boiling. |
8 | Sea water (8.1). Egg white. |
9 | Borax. baking soda. |
10 | Milk of magnesia, Magnesium hydroxide Mg (OH)2. |
11 | Household ammonia |
12 | Photographic developer, household bleach |
13 | Oven cleaner |
14 | Sodium lye NaOH, 1 mol/litre. |